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Abstract
A hybrid reasoning system is developed for damage assessment of
structures. The system combines the use of a model of the structure with a
knowledge-based reasoning scheme to evaluate if damage is present, its
severity (severity and dimension) and its location. Using a given model (or
several models), the structural dynamic responses to given excitations are
simulated in the presence of different forms of damage. In a ‘learning mode’
an initial casebase is created with the principal features of these damage
responses. When the system is working in its operating mode, data acquired
by sensors are used to perform a diagnosis by analogy with the cases stored
in the casebase, reusing and adapting old situations. Whenever a new
situation is detected, it is retained in the casebase to update the available
information. This paper describes the methodology and how the system is
built and tuned to be ready for operation. This is illustrated by a numerical
example of a cantilever truss structure and tested numerically and
experimentally with a beam structure. Conclusions are presented with the
emphasis on the advantages of using knowledge-based systems for structural
assessment.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The need to apply global damage identification methods in
complex structures has encouraged researchers to inspect
changes in the vibration characteristics of structures. An
excitation signal is applied and the resulting dynamic
response is examined. Doebling et al [4] present a
comprehensive literature review of damage identification and
health monitoring methods based on vibration measurements
for structural and mechanical systems. The basic premise of
vibration-based damage detection is that the damage will alter
the stiffness, mass or energy dissipation properties of a system,
which, in turn, will alter the measured dynamic response of the
system. Most of the methods developed to solve the damage

4 Author to whom any correspondence should be addressed.

identification problem regard it as a problem of identification,
optimization, pattern recognition or classification.

The methodology proposed in this paper is based on a
pattern recognition approach for structural assessment. The
use of knowledge-based approaches to damage identification
was suggested by Natke and Yao in 1993 [12]. However,
the authors know of no references to using these approaches
specifically for damage detection. On the other hand, in
the field of structural design, some researchers [5, 8, 10]
have applied case-based reasoning to bridge design. Because
many modelling possibilities exist to explain the behaviour
of structures, Raphael and Smith [14, 16, 15] describe
an approach for selecting appropriate causal models for
engineering diagnosis. They combine compositional
modelling with model reuse to improving the quality of
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Figure 1. CBR system.

diagnosis. Model composition permits reasoning with
multiple models containing explicit assumptions. Difficulties
related to intractability during model composition are reduced
by model reuse.

The systems in which an ‘expert’ applies his/her
experience and knowledge to a situation can frequently provide
the solution to a problem without resorting to an intensive
investigation [18]. To solve the damage identification problem
the wavelet transform (WT) is used to extract the principal
features of a signal, case-based reasoning (CBR) is applied to
obtain an initial diagnostic by analogy, and a self-organizing
map (SOM) is trained as a classification tool to organize the
old cases in memory, for the purpose of speeding up the
reasoning process. Finally, when similar old cases are retrieved
the damage severity and location are obtained directly from
heuristics.

The basic definitions of case-based reasoning are
presented in section 2. The methodology for damage
identification is described in detail in section 3, which describes
the extraction of the principal features from the structural
response, organization of the existing knowledge, retrieval and
adaptation of the solution to identify the damage. A case study
is presented in section 4, in which a model and a real structure
were used to test this methodology. Finally, conclusions are
presented emphasizing the advantages of using knowledge-
based reasoning for structural assessment.

2. Case-based reasoning (CBR)

2.1. Introduction

Humans are robust problem solvers; they solve difficult
problems despite incomplete and uncertain knowledge, and
their problem-solving competence improves with experience.
All of these qualities are desirable for intelligent computer
systems operating in the real world. Essentially, case-based
reasoning (CBR) is a model of human reasoning. The idea
behind CBR is that people rely on previous experiences when
they need to solve problems, reusing solutions without thinking
too much about the situation. It is based on the perception
that new problems are often similar to previously encountered
problems and, therefore, those past solutions can be used in the
current situation [17]. There are many examples to illustrate
this idea. In any field, when tackling a problem, a professional
with many years of experience is generally considered to be
more suitable than a recent graduate with brilliant grades.
Doctors use diagnoses and treatments that were effective for

Figure 2. CBR cycle.

former patients when a new patient with similar symptoms
appears. Lawyers frequently rely on reasoning based on
proceedings or jurisprudence in the absence of well-defined
concepts and precise laws. Chess players normally use
automatic sequences of moves, which respond to variations of
classic plays applied effectively to a set of similar situations.
Daily life continually presents opportunities to apply case-
based reasoning.

2.2. Case representation

A CBR system requires a set of experiences, ‘cases’, which
are stored in a ‘casebase’. A case is ‘a contextualized piece
of knowledge representing an experience that teaches a lesson
fundamental to achieving the goals of the reasoner’ [7, 9]. Each
case is generally a register comprising a description (minimal
representation) of a problem and the functional solution (see
figure 1).

2.3. CBR cycle

To reach the goal, CBR methodology proposes a cycle of the
four Rs (see figure 2). The CBR cycle basically consists of
Retain cases for further Reuse. The aim is to Reuse these cases
for solving new problems by analogy. A problem is solved
by Retrieving a similar problematic situation (case or cases)
from the past and Reusing its solution in the new situation.
Reusing implies a procedure of adapting the Retrieved solution,
which is then completed with the Revision [1]. In practice, it is
difficult to distinguish between Reuse and Revise stages, and it
may be best to think of these as a single Adaptation stage [3].

Case Retrieval is the first stage in the functional cycle
of a CBR system. Given the description of a situation, or
problem, and a set of objectives, or tasks, that have to be
performed, it is a question of finding a similar case, or a small
set of similar cases, that may be useful. In case-based problem
solving, old situations are used as inspiration for solving new
problems, because new situations rarely exactly match the
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old situations. However, old solutions must be modified to
fit new situations. In this step, called Adaptation, there are
two phases [7]: (1) Determining the differences between the
case being considered and that retrieved from memory, and (2)
Modifying the solution proposed in the retrieved case to take
into account such differences. This modification is necessary
to either adapt the previous situation to the new situation or
repair it if it is not entirely correct. When the solution generated
in the adaptation phase is not correct, the CBR system learns
from the errors made. The Revision phase consists of two tasks:
(1) Evaluation of the generated solution, and (2) Learning from
the success and retaining the case if the solution is shown to be
correct, or if not, correcting the system by resorting to possible
methods of adaptation. Evaluating a solution is to judge the
suitability of the proposed solution. Sometimes evaluation
is performed in the context of previous cases; sometimes
it is based on feedback from the real world; sometimes,
it is based on simulation. Evaluation includes explaining
the differences, justifying the differences, projecting the
outcomes, and comparing and ranking alternative possibilities.
At the moment of Retaining new cases into the casebase, the
system must decide which information is to be retained and
how it is to be incorporated into the memory structure. The
learning process produces a modification of the structure as
well as of the data of the casebase. Avoiding repetition of
future failures is one of the learning benefits of a CBR system.

The form in which the cases are represented, how the
similarity is determined, how the adaptation is done, and how
the decision is made about the information necessary to be
stored to obtain sufficient coverage of the application domain
are topics that are mutually inclusive. For example, the better
the capacity for adaptation the system has, the fewer cases
it requires. Tools and methodologies used to tackle these
subjects are described below. In many different areas attention
is also being devoted to the combination of CBR with other
methods. These combinations can involve CBR systems using
other methods for support, CBR systems integrated with other
methods, or CBR systems in a purely support role. Artificial
neural networks (ANNs) are usually used for learning and
generalization on knowledge and patterns. Case retrieval is
essentially a pattern matching problem (a current input pattern
or case with one or more stored patterns or cases). This is
because ANNs, which are very efficient for matching patterns,
are very useful tools for retrieving cases in CBR systems [11].

3. CBR methodology for damage identification

3.1. Overview

Recognizing the presence of structural damage can be a simple
task performed on the basis of anomalies in the dynamic
response. However, determining more precise information as
to the position and nature of the damage is more complicated.
This section describes a methodology for structural assessment
(identification of the damage, its location, size and severity)
using knowledge-based reasoning. First, in a ‘learning mode’
a model of the structure is used to simulate damage responses
and to generate a set of cases. Using self-organizing maps
(SOMs) as a classification tool [6], an initial casebase is built.
This casebase is to be used in diagnosing future situations by

Figure 3. Proposed CBR cycle.

analogy (see figure 3). To reduce the number of input signals
to the self-organizing map, without reducing the classification
accuracy required, the wavelet transform is used to extract
features from the measured signal while retaining most of the
intrinsic information. When the system is in the ‘operation’
mode each new experience is retained once the damage has
been detected.

This methodology is described using a numerical example
of a cantilever truss structure with eight sections (see
figure 4). The material and geometric specifications have been
previously assigned. Two antiphase sine excitation forces are
applied to elements 36 and 38. The element 1 was chosen as
the sensor receiving the propagated wave. Briefly, the steps
for the damage assessment are as follows.

Learning mode

(a) Choose the structure to study.
(b) Define what damage is to be identified (size and severity).
(c) Choose a set of cases which contain previous simulations

of several structural damage cases.
(d) Build the casebase from the selected cases.

Operating mode

(a) Load the waveform detected by the sensor during the test
of the selected structure.

(b) Retrieve the most similar cases from the casebase.
(c) Adapt the previous solutions to propose a new solution.
(d) Generate the outcome report and display the damage of

the structure.
(e) Retain the new solution as a part of a new case once it has

been confirmed or validated.

3.2. Cases

Before generating the cases, it is necessary to define which
defects are the most representative, bearing in mind the damage
to be identified. In other words, which are the most frequent
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Figure 4. Cantilever truss structure.

Figure 5. One case example: defect in element 18 and the corresponding dynamic response.

defects, which are the most important defects, which defects
are really coherent, and which are the smallest and the biggest
defects (severity and size). The casebase must not be loaded
with damages that will never occur.

Each case is obtained by means of a model or several
models of the structure, simulating the dynamic response to
a given excitation in the presence of one or several defects.
Each case is a data structure, which contains the defect of the
structure (localization, severity, size, etc) and the simulated
dynamic response. For example, figure 5 shows one case in
which element 18 is subject to damage with a mass reduction
of 25% and its dynamic response.

In this structure, we intend to identify defects for a variety
of damage scenarios.

(a) No damage.
(b) Damage in a single element.
(c) Damage in two consecutive horizontal elements.
(d) Damage in three consecutive horizontal elements.
(e) Damage in four consecutive horizontal elements.

(f) Damage in five consecutive horizontal elements.
(g) Damage in two elements of the same section.
(h) Damage in three elements of the same section.
(i) Damage in four elements of the same section.
(j) Damage in five elements of the same section.
(k) Damage in all the elements of the structure.

This damage is a mass reduction of between 5% and
60%. A total number of 23 593 simulations were performed
to obtain the dynamic responses for all possible cases in the
above scenarios.

3.3. Casebase building

The casebase is an array in memory organizing all the cases to
facilitate the search for the case most similar to the current
problem. In the proposed methodology, the casebase is a
self-organizing map. Each case is defined by the defect of
the structure and the minimal representation of its damaged
dynamic response. In this case, the minimal representation
is the set of principal features that are extracted from the
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Figure 6. Casebase building.
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Figure 7. (a) U -matrix of the SOM. (b) Disorganized variables
before learning. (c) Organized variables after learning.

coefficients of the wavelet transform applied to the dynamic
response [2]. Figure 6 shows the process of feature extraction
and building the casebase.

3.3.1. Feature extraction method. These principal features
are extracted from the coefficients of the wavelet transform
applied to the dynamic response. The wavelet coefficients
are computed for each selected case. The coefficients at the
same position in different cases are considered as samples of
independent random variables. Therefore, bearing in mind
the central limit theorem, each variable is approximately
normally distributed. The maximal normal numbers and the
maximal wavelet coefficients occur at the same positions,
which determine the midpoints of the clusters. This pattern
of clusters contains relevant signal information. Later, each
feature is determined as the square root of the energy of the
wavelet coefficients in the corresponding cluster [13]. This set
of cases (defect of the structure and principal features of the
signal) is used to build the casebase.

3.3.2. Self-organizing map training. After the set of cases
is generated (defect and the principal features of the dynamic
response) they are organized in memory for recovery at the
required time, and an SOM is created and trained. This
SOM has l neurons (one for each feature) in the input layer
and m ∗ n clusters or neurons in the output layer. In the
example, the SOM has 65 input neurons and 50 ∗ 50 output

Figure 8. Signal detected by the sensor.

Table 1. Retrieved cases.

Damaged element Severity Distance

-15- -30%- 0.003 62
-14-15 -10%-10%- 0.007 47
-11-14-15- -10%-10%-10%- 0.011 23
-11-15- -10%-10%- 0.014 83
-11-14- -15%-15%- 0.015 17
-30- -30%- 0.030 71
-29-30- -25%-25%- 0.033 08
-29-30- -30%-30%- 0.033 08
-14-15- -25%-25%- 0.033 97
-25- -30%- 0.035 30
-29-30- -20%-20%- 0.040 81
-26-29- -15%-15%- 0.041 04
-26-30- -15%-15%- 0.041 62
-11-14- -10%-10%- 0.042 53
-30- -20%- 0.044 99

neurons. In each cluster, this network organizes the cases
with similar characteristics. The unified distance matrix of
an SOM (U -matrix) is shown in figure 7(a). These values
indicate the distances between the weights of each neuron
and its neighbourhood. High values indicate small correlation
between clusters. The distribution of a variable into the SOM
before training is shown in figure 7(b) and the organization of
variables into the SOM after training is shown in figure 7(c).

3.4. Retrieving

Checking the methodology or putting the system in operation
mode can be performed by simulation, laboratory testing,
and even in normal working conditions for real structures.
Consider an example of the structure in operational mode and
the signal shown in figure 8, which represents the dynamic
response captured by the sensors. From this signal, the
principal features are extracted using the clustering pattern
previously defined (see figure 9). From these features the SOM
retrieves a set of stored cases with similar characteristics. The
activated clusters are shown in figure 10: the size of the black
hexagon is proportional to the value of the data histogram
(inversely proportional to the distance) in the corresponding
cluster. This value indicates the distance between the input
vector (principal features) and each cluster; in other words, it
represents the similarity between the new case and the stored
cases. The smaller the distance, the more similar the cases.
Each black cluster corresponds to the best match, and white
clusters correspond to the worst. Table 1 gives the cases
(damaged element and its severity) stored in the activated
clusters with their distances.
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Figure 9. Principal features of the signal.

Figure 10. Activated clusters.
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Figure 11. Proposed solution.

Table 2. Material of the beam.

Young’s modulus Density
Material (GPa) (kg m−3)

Aluminium 65.78 2710
Steel fixing 207 7680
Truss rod 0.28 7117
(piezo actuator)

3.5. Adapting

From the retrieved cases (table 1), it is noted that the element 15
appears in the first four cases and the element 11 appears three
times but not with the least distances. We want to reward (1)
elements that are repeated several times—the more frequent
the repetition, the higher the probability of being the ‘winner’;
and (2) similar cases—the smaller the distance, the higher
the probability of being the ‘winner’. To do this, a factor is
calculated for the element, which is the sum of the inverses of
the distances in which this element is present. For example,
the factor for element 15 is

F15 = 1

0.003 62
+

1

0.007 47
+

1

0.011 23

+
1

0.014 83
+

1

0.033 97
= 596.0277. (1)

Figure 12. Beam model.

Figure 13. (a) Actuator. (b) Sensor.

Then, normalizing these factors, the probabilities of the
damage in each element are calculated. The solution proposed
to localize the defect in the example is shown in figure 11.

To calculate the size and the severity of the defects,
a weighted average is computed, using as a weighting
coefficients the inverse of the distances (see equations (2), (3)),
where n is the total number of retrieved cases, and dim, dam
and d are the dimension, the damage and the distance of each
retrieved case, respectively. Note that d(1) is the minimum
distance. In this case the dimension is 1.7, which is rounded
to two elements with a mass reduction of 29.86%.

Dimension =
n∑

j=1

dim( j ) ∗ d(1)/d( j )∑n
i=1 d(1)/d(i)

(2)

Severity =
n∑

j=1

dam( j ) ∗ d(1)/d( j )∑n
i=1 d(1)/d(i)

. (3)

4. Beam case study

We applied the proposed methodology to damage detection in
an experimental beam. Its physical characteristics are shown
in figure 12 and table 2. It is equipped with a piezoelectric
actuator (see figure 13(a)) that induces ending mode due to a
sine wave excitation signal of 142.8572 Hz frequency and only
one period duration. A sensor (see figure 13(b)) measures the
bending strains (curvature) at the specified location. A finite
element model is considered, as illustrated in figure 12, with a
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Figure 14. (a) Dynamic response in the presence of damage.
(b) Damage identification.
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Figure 15. (a) Dynamic response in the presence of damage.
(b) Damage identification.

Table 3. Retrieved cases.

Damaged element Severity Distance

-45- -20%- 0.000 148 36
-46- -20%- 0.000 148 36
-40-41-42-43-44- -5%-5%-5%-5%-5%- 0.000 148 36
-41-42-43-44-45- -5%-5%-5%-5%-5%- 0.000 148 36
-42-43-44-45-46- -5%-5%-5%-5%-5%- 0.000 148 36
-43-44-45-46-47- -5%-5%-5%-5%-5%- 0.000 148 36
-44-45-46-47-48- -5%-5%-5%-5%-5%- 0.000 148 36
-45-46-47-48-49- -5%-5%-5%-5%-5%- 0.000 148 36
-43- -20%- 0.000 341 868
-48- -25%- 0.000 341 868
-42- -20%- 0.000 352 233
-49-50- -15%-15%- 0.000 352 233
-48-49-50- -10%-10%-10%- 0.000 352 233
-39-40-41-42-43-44- -5%-5%-5%-5%-5%-5%- 0.000 352 233
-46- -25%- 0.000 515 879

total of 102 elements: 93 for the beam and 9 for the actuator
and its fixing.

The objective is to detect defects in at most five elements.
A total of 5464 cases of the damaged structure have been
simulated (up to 10 consecutive elements with 12 different
reductions of mass), with a computation time of approximately
10 h. A total of 57 principal features have been extracted from
each response signal. An SOM of 57 input neurons and 50∗50
output neurons has been trained in 35 min. Three examples
are presented, two using numerical simulations and the third
using experimental data from the real structure.

Figure 16. Original and damaged beam.
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Figure 17. (a) Dynamic response in the presence of damage.
(b) Damage identification.

4.1. Simulation of one fault in five consecutive elements

Damage was simulated in elements 43-44-45-46-47 with a
mass reduction of 5%-15%-15%-15%-5%, respectively. The
structural response is shown in figure 14(a). The retrieved
cases are shown in table 3, detecting damage approximately in
the assumed elements and a mass reduction of 6.7% in each
element (see figure 14(b)).

4.2. Simulation of two faults in three consecutive elements

Two faults have been simulated in elements 28-29-30 and
59-60-61 with mass reductions of 20%-30%-20% and 20%-
30%-20% respectively. The structural response is shown in
figure 15(a). The retrieved cases are shown in table 4, showing
damage detected at approximately elements 29 and 60, and a
reduction in mass of 25% in each element (see figure 15(b)).

4.3. Experimental damage in unknown elements

Damage was caused to the real structure in elements 44-
45-46 (see figure 16). The structural response is shown
in figure 17(a). The retrieved cases are shown in table 5.
We observed that this methodology detected damage in the
neighbourhood of element 46 and a mass reduction of 45%
(see figure 17(b)).

5. Conclusions

The feasibility of assessing structures using a knowledge-based
reasoning approach has been demonstrated numerically and
experimentally. This methodology performs satisfactorily in
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Table 4. Retrieved cases.

Damaged element Severity Distance

-29-30- -50%-50%- 0.001 3566
-60-61-62- -30%-30%-30%- 0.001 3566
-29-30-31- -35%-35%-35%- 0.002 6292
-28-29-30-31-32- -25%-25%-25%-25%-25%- 0.002 6292
-60-61-62- -35%-35%-35%- 0.002 8319
-28-29-30-31- -30%-30%-30%-30%- 0.002 8319
-29-30- -40%-40%- 0.002 9684
-59-60-61-62-63- -20%-20%-20%-20%-20%- 0.003 0993
-58-59-60-61-62-63- -20%-20%-20%-20%-20%-20%- 0.003 0993
-29-30- -45%-45%- 0.003 3241
-61-62- -40%-40%- 0.003 3241
-28-29-30- -35%-35%-35%- 0.003 3241
-27-28-29-30-31-32- -20%-20%-20%-20%-20%-20%- 0.003 3241
-59-60-61-62- -25%-25%-25%-25%- 0.003 5077
-58-59-60-61-62- -20%-20%-20%-20%-20%- 0.003 5077
-27-28-29-30-31-32-33- -20%-20%-20%-20%-20%-20%-20%- 0.004 9899
-57-58-59-60-61-62-63-64- -15%-15%-15%-15%-15%-15%-15%-15%- 0.004 9899
-26-27-28-29-30-31-32-33-34- -15%-15%-15%-15%-15%-15%-15%-15%-15%- 0.004 9899
-56-57-58-59-60-61-62-63-64- -15%-15%-15%-15%-15%-15%-15%-15%-15%- 0.004 9899

Table 5. Retrieved cases.

Damaged element Severity Distance

-38-39-40-41-42-43- -55%-55%-55%-55%-55%-55%- 2.9403
-37-38-39-40-41-42-43-44-45- -45%-45%-45%-45%-45%-45%-45%-45%-45%- 2.9403
-37-38-39-40-41-42-43-44-45-46- -40%-40%-40%-40%-40%-40%-40%-40%-40%-40%- 2.9403
-44-45-46-47-48-49-50-51-52-53- -45%-45%-45%-45%-45%-45%-45%-45%-45%-45%- 2.9403
-46-47-48-49-50-51- -55%-55%-55%-55%-55%-55%- 2.9444
-44-45-46-47-48-49-50-51-52- -45%-45%-45%-45%-45%-45%-45%-45%-45%- 2.9444
-38-39-40-41-42-43-44-45-46-47- -40%-40%-40%-40%-40%-40%-40%-40%-40%-40%- 2.9444
-43-44-45-46-47-48-49-50-51-52- -40%-40%-40%-40%-40%-40%-40%-40%-40%-40%- 2.9444
-46-47-48-49-50-51-52- -50%-50%-50%-50%-50%-50%-50%- 2.9456
-46-47-48-49-50-51-52-53- -50%-50%-50%-50%-50%-50%-50%-50%- 2.9456
-45-46-47-48-49-50-51-52-53- -45%-45%-45%-45%-45%-45%-45%-45%-45%- 2.9456
-44-45-46-47-48-49-50-51-52-53- -40%-40%-40%-40%-40%-40%-40%-40%-40%-40%- 2.9456
-46-47-48-49-50- -60%-60%-60%-60%-60%- 2.9551
-41-42-43-44-45-46-47-48-49-50- -40%-40%-40%-40%-40%-40%-40%-40%-40%-40%- 2.9551
-39-40-41-42-43-44-45-46- -45%-45%-45%-45%-45%-45%-45%-45%- 2.9557
-39-40-41-42-43-44-45-46-47-48- -40%-40%-40%-40%-40%-40%-40%-40%-40%-40%- 2.9557
-38-39-40-41-42-43-44- -50%-50%-50%-50%-50%-50%-50%- 2.9559
-38-39-40-41-42-43-44-45- -45%-45%-45%-45%-45%-45%-45%-45%- 2.9559
-45-46-47-48-49-50-51-52- -50%-50%-50%-50%-50%-50%-50%-50%- 2.9559
-38-39-40-41-42-43-44-45-46- -40%-40%-40%-40%-40%-40%-40%-40%-40%- 2.9559

locating damage and assessing its size and severity. Two of
its advantages are: (1) it exploits the model of the structure
to preload the casebase in the initial learning mode, and (2) in
the operational mode, it incorporates new real damage cases
in the casebase, improving the robustness of the methodology
against errors in the model.

It is important to predetermine which damages are
coherent. In theory, the casebase can be loaded with many
cases but in practice there are storage limitations. Therefore,
the casebase must not be loaded with defects that will never
happen. Generating the cases involves a high computational
cost. Building the casebase is much faster. However, it is
important to note that these steps are executed once and before
the system is put into operation. The retrieval and adaptation
of cases to identify the defect and the feedback of the casebase
(retraining the SOM) are practically immediate. Therefore, it
is reasonable to conclude that this methodology can be applied
to assess structures in real time.

The complexity of diagnostic tasks in structural
engineering is often due to the large number of possible models
for interpreting structural behaviour. For example, in a bridge,
one model is the best at simulating cracks at the support but
a different model is the best at simulating damage in the mid-
span of the bridge. This methodology permits the simultaneous
use of several models to build the casebase. In this way, it is
readily adaptable for identifying different types of damage.
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